
N95- 19756 /

.J _.f _ _ f

SIMULATION IN A DYNAMIC PROTOTYPING ENVIRONMENT:

F.ETR,,ErsoRRULES: /.

Loretta A. Moore and Shannon W. Price

Computer Science and Engineering

Auburn University

Auburn, AL 36849

(205) 844 - 6330

moore@eng.auburn.edu

Joseph P. Hale

Mission Operations Laboratory

NASA Marshall Space Flight Center

MSFC, AL 35812

(205) 544-2193

joe.hale@msfc.nasa.gov

ABSTRACT

An evaluation of a prototyped user interface is best supported by a simulation of the system. A
simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the
screen's appearance. This allows potential users to evaluate both the look (in terms of the screen

layout, color, objects, etc.) and feel (in terms of operations and actions which need to be per-
formed) of a system's interface. Because of the need to provide dynamic evaluation of an interface,
there must be support for producing active simulations. The high-fidelity training simulators are
normally delivered too late to be effectively used in prototyping the displays. Therefore, it is im-

portant to build a low fidelity simulator, so that the iterative cycle of refining the human computer
interface based upon a user's interactions can proceed early in software development.

INTRODUCTION

The Crew Systems Engineering Branch of the Mission Operations Laboratory of NASA Marshall

Space Flight Center was interested in a dynamic Human Computer Interface Prototyping Envi-
ronment for the International Space Station Alpha's on-board payload displays. On the Space
Station, new payloads will be added to the on-board complement of payloads in ninety day
increments. Although a payload starts its development and integration processes from two to four
years before launch, a set of new payloads' displays are due every ninety days. Thus, this drives

the need for an efficient and effective prototyping process. The functional components of a dy-
namic prototyping environment in which the process of rapid prototyping can be carried out have
been investigated.

Most Graphical User Interface toolkits allow designers to develop graphical displays with little or
no programming, however in order to provide dynamic simulation of an interface more effort is

required. Most tools provide an Application Programmer's Interface (API) which allows the de-

signer to write callback routines to interface with databases, library calls, processes, and
equipment. These callbacks can also be used to interface with a simulator for purposes of
evaluation. However, utilizing these features assumes programming language knowledge and
some knowledge of networking. Interface designers may not have this level of expertise and
therefore need to be provided with a friendlier method of producing simulations to drive the
interface.

This research is supported in part by the Mission Operations Laboratory, NASA, Marshall Space Right
Center, MSFC, AL 35812 under Contract NAS8-39131, Delivery Order No. 25. The views and conclu-

sions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of NASA.

273

A rapid prototyping environment has been developed which allows for rapid prototyping and
evaluation of graphical displays [2]. The components of this environment include: a graphical user
interface development toolkit, a simulator tool, a dynamic interface between the interface and the

simulator, and an embedded evaluation tool. The purpose of this environment is to support the
process of rapid prototyping, so it is important that the tools included within the environment
provide the needed functionality, but also be easy to use.

This paper describes two options for simulation within the dynamic prototyping environment:
petri nets and rule-based simulation. The petri net system, PERCNET [3], is designed to be used
as a knowledge-based graphical simulation environment for modeling and analyzing human-
machine tasks. With PERCNET, task models (i.e., simulations) are developed using modified petri
nets. The rule based system is a CLIPS [1] based system with an X windows interface for running
the simulations. CLIPS executes in a non-procedural fashion making it ideal for representing ran-
dom and concurrent events required by the simulation. Its C language-based design allows
external communication to be programmed directly into the model. In order to compare the two
approaches for simulation, a prototype of a user interface has been developed within the dynamic
prototyping environment with both simulation architectures. This paper compares the two systems
based upon usability, functionality, and performance.

ARCHITECTURE OF THE DYNAMIC PROTOTYPING ENVIRONMENT

There are four components of the Human Computer Interface (HCI) Prototyping Environment: (1)
a Graphical User Interface (GUI) development tool, (2) a simulator development tool, (3) a dy-
namic, interactive interface between the GUI and the simulator, (4) an embedded evaluation tool.
The GUI tool allows the designer to dynamically develop graphical displays through direct
manipulation. The simulator development tool allows the functionality of the system to be im-
plemented and will act as the driver for the displays. The dynamic, interactive interface will
handle communication between the GUI runtime environment and the simulation environment.

The embedded evaluation tool will collect data while the user is interacting with the system and
will evaluate the adequacy of an interface based on a user's performance. The architecture of the
environment is shown in figure 1.

f

User Graphical
Interface

Server Simulator

Embedded
Evaluation

T
Environment

(Simulation
Director)

Figure 1 - HCI Prototyping Environment Architecture

274

Interface Development Tool

The Graphical User Interface (GUI) tool for the prototyping environment will allow the designer
to create the display through direct manipulation. This includes the creation of static and dynamic
objects, windows, menus, and boxes. The tool also allows objects created to be linked to a data
source. During execution, the interface objects send and receive data and commands to the simu-
lator by way of the data server. The user interface objects and their associated data access

description are defined independent of the actual source of data. This first allows the development
of the interface and the simulator to occur concurrently. Second, an interface developed with the
GUI tool can later be connected to a high fidelity simulator and then to the actual flight software.

Simulator Development Tool

The simulator development tool provides the capability to develop a low fidelity simulation of a
system or process. The development of a simulation has two important functions. First, the sim-
ulation helps the designer identify and define basic system requirements. Second, potential users
can evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of
operations and actions which need to be performed) of a system. The simulator provides realistic
feedback to the interface based on user inputs.

Dynamic, Interactive Interface

This interface will handle communication between the GUI prototyping tool and the simulation

tool during execution. The interface is a server which has been developed using the GUI's Appli-
cation Programmer's Interface. Messages and commands can be sent and received both ways
between the GUI and the simulator. The server also services requests from the embedded evalu-
ation process, providing information as to which actions the user has taken and which events and
activities have fh-ed.

Embedded Evaluation Tool

An important aspect of the prototyping process is the ability to evaluate the adequacy of the de-
velo.ped graphical user interfaces. The embedded evaluation tool communicates with the server to

receive information on the interaction between the user and the system. The types of data col-
lected include user actions, simulator events and activities, and the times associated with these

items. The collected data is analyzed to determine task correctness, task completion times, error
counts, and user response times. The data is then analyzed to provide feedback as to which fea-

tures of the interface the user had problems with and therefore need to be redesigned.

An Example: The Automobile Prototype

In order to assess the architecture described above a system was chosen to be prototyped in the
environment. The system chosen for empirical evaluation of the HCI prototyping environment
was an automobile. An automobile has sufficient complexity and subsystems' interdependencies
to provide a moderate level of operational workload. Further, potential subjects in the empirical
studies would have a working understanding of an automobile's functionality, thus minimizing
pre-experiment training requirements.

An automobile can be considered a system with many interacting components that perform a task.
The driver (or user) monitors and controls the automobile's performance using pedals, levers,

275

gauges, and a steering wheel. The dashboard and controls are the user interface and the engine is
the main part of the system. Mapping the automobile system to the simulation architecture calls
for a model of the dashboard and driver controls and a separate model of the engine. Figure 2
demonstrates how an automobile system could be mapped into the architecture described. The

main component of the automobile is the engine which responds to inputs from the driver (e.g. the
driver shifts gears or presses the accelerator pedal) and factors in the effects of the environment
(e.g. climbing a hill causes a decrease in the speed of the car). The driver changes inputs to obtain
desired performance results. If the car slows down climbing a hill, pressing the accelerator closer
to the floorboard will counteract the effects of the hill.

 ii!i!iiiiiiiiiiiiiiiiii ,
 iiiiiiliiiii I!iil iil!iii!iiiiil!l

_iiiii!i!i_iii_ii_ii_iiiiiiiiiiiiii_iii!iiiiiiiii!iiiiiiiiiiiiiiiii

iiiiiiiii ii iii iiiiiiiiii
!iiiiiiii!iiiiiiililililiiiiiii!iiiii ii i ii!iiiii!i!iiiiiii!i!ii!iiiiiiiii

i!!!ii!i_i_!_!!!_!_!i_i!iiii_iii_!_i_!!i!i_i_!i!!!!!!i!_i!iiii_i_iiiiii_!iii!_!!_!_i!_!i_!_!_ii!!i_

Figure 2 - Automobile Prototype

The dashboard and controls have been modeled using Sammi [5], a graphical user interface de-
velopment tool developed by Kinesix. Two options have been investigated for simulation: petri
nets and rules. Petri nets provide a graphical model of concurrent systems. The petri net system
which has been used is PERCNET [3], developed by Perceptronics. PERCNET is designed to be

used as a knowledge-based graphical simulation environment for modeling and analyzing human-
machine tasks. With PERCNET, task models are developed using modified petri nets, a combi-
nation of petri nets, frames, and rules. The rule based system which has been used is CLIPS [1], a
rule based language primarily used for the design of expert systems, developed by NASA. CLIPS
executes in a non-procedural fashion making it ideal for representing random and concurrent
events. The automobile system has been prototyped using both the petri net and rule-based systems
as simulators and comparisons have been made based upon functionality, usability, and

performance.

SIMULATION IN THE DYNAMIC PROTOTYPING ENVIRONMENT

Because of the need to provide dynamic evaluation of an interface rather than just static evalua-
tion, there must be support provided for producing active simulation. Most GUIs, including
Sammi, provide some sort of Application Programmer's Interface (API) which allow the devel-
oper to write call back routines which interface with databases, library calls, other processes and

equipment. We would like to provide a means of building a low fidelity simulation of the system
to drive the interface which requires little programming.

276

Basic simulation requirements include the ability to model events and activities, both sequentially
and concurrently. The system should provide the ability to create submodels within the main

model. The simulator clock must be linked to the system clock, and support should be provided

for the creation of temporal events. The process must be able to communicate with UNIX pro-
cesses using the TCP/IP protocol. Real-time communication must also be provided to allow the
tool to communicate with the GUI tool on a separate platform via Ethemet. The ability for two-
way asynchronous communication between the runtime versions of the interface and the simulator

must be provided. The simulator must be capable of receiving data from the GUI tool to dynam-
ically control temporal events, to modify the values of variables, and trigger events and activities.
The ability to specify and send commands, data, and alarms to the GUI tool must also be provided.
A simulator director should be able to send commands (e.g., start simulation, trigger scenario
event, etc.) to the simulator from a monitoring station. An interface should be provided in order to
bind interface objects to simulation objects in order to set the values of variables, trigger events or
activities, and set temporal variables.

Simulation Using Petri Nets

PERCNET is a very powerful system analysis software package designed by Perceptronics, Inc. It
provides an easy-to-use, graphical interface which allows users to quickly lay out a petri net model

of the system. PERCNET uses "modified" petri nets, which allow each state to describe pre-
conditions for state transitions, modify global variables, perform function calls and maintain a
global simulation time.

Pictorially, Pelri nets show systems of activities and events. Ovals represent activities which de-

scribe actions performed by the system. Activities are joined by events, represented by vertical
bars, that occur during execution. Events are associated with user actions and environmental

conditions. Execution is shown by tokens propagating through the system. Flow of control passes
from activities to events. Before an event can fire all incoming arcs must have tokens. When this
occurs, the event places tokens on all outgoing arcs passing control to activities. The behavior that
an event exhibits during execution is dependant on the data contained in its frame. Frames record

data related to each activity and event. Event frames may contain rules and functions. Activity
frames allow the designer to specify a time to be associated with each activity. Figure 3 shows the
top-level petri net of the automobile simulator.

Start

distributor

':2:+2
/ stop

spark plugs

End

Figure 3 - Top-Level Pelri Net of the Automobile Simulator

277

The starter is the component that is activated by the turning of the key. Before the starter can begin
working, however, the key should be turned on, the driver must be wearing his/her seat belt, the
car must be in neutral and the battery must have a sufficient charge to start the starter. When all
three pre-eonditions are true, the starter is activated and control advances to the right in the Petri
net. Once the starter has been activated, it must do its part to start the automobile. The starter
allows electricity to flow into the distributor where it is channeled into the spark plugs. As long as
the starter is functioning, the distributor and spark plugs are activated. Finally, as long as the spark
plugs and distributor are working properly and there is gasoline, the spark from the spark plugs
ignites the gasoline mixture in the engine and ignition is achieved. Now that ignition has been
accomplished, the engine is running. The concentric circles representing the engine_running ac-
tivity in Figure 3 indicate that the state is shown in a sub-net.

The petri net representing the automobile passes from the ignition portion to the engine running
state and remains in the running state until some condition causes the engine to stop running. The
engine will stop running if the engine runs out of gas, runs out of oil, the temperature rises above
a certain threshold, the key is turned off, the engine stalls (when the automobile is in some gear and
the rpms fall below a threshold amount), the battery loses its charge or the fuel pump, oil pump,
spark plugs or alternator fail.

The major components of the engine modeled are: fuel pump, oil pump, water pump, distributor,
spark plugs, starter, battery, alternator, and fan. The condition of these components is modeled
using a boolean variable indicating either that they are functioning or they are not. The boolean
variables are then used as conditions within events occurring during the simulation. Details of the
Petri Net implementation can be found in [2].

Simulation Using Rules

Since CLIPS is rule-based, it is completely non-procedural. Furthermore, it allows programmers
to pick the strategy by which successive rule-fL,'ings are chosen. Certain rules may be designated

fired by different priority levels (rules with the highest priority fh'e before rules with lower prior-
ity). Other rule-selection strategies govern how rules with equal priority are selected. Events and
activities are represented by the pre- and post-conditions of rules. For example, the rule for acti-
vating the starter is:

(defrule TURN_KEY

?tick <- (clock_tick)

(test (= 1 ?*key*))

=>

(test (=

(test (=

(test (>

(test (=

1 ?*seatbelt*))

?*gear* 0))

?*battery* 10.0))

?*state* ?*READY*))

(bind ?*state* ?*STARTER*)

(retract ?tick)

(assert (clock_tick))

(printout t "ACTIVATE STARTER C ?*time* ")" crlf)

(tick_tocks 2)

(assert (updated TRUE))

278

In this project, CLIPS has been extended to include communication capabilities [4]. Two sockets
have been provided for reading from and writing to the server. C functions have been developed
to eliminate redundant information from the messages passed to the server. Another improvement
compiled into the CLIPS executable has been a control process that allows a user to start, stop and
quit CLIPS execution through a graphical interface.

The project also demonstrates some programming techniques used in CLIPS to support the
simulation. A global simulation time should be maintained and a mechanism for keeping simula-
tion execution time has been demonstrated. Another important feature that makes use of the timer
is the periodic update feature. This ensures that CLIPS execution pauses (i.e., no rules may fLre)
every few seconds to send and receive information from the server. When this happens, control
returns to the main routine which initializes communication with the server.

Writing CLIPS programs to take advantage of this strategy requires the incorporation of several
techniques. These techniques include rules, variables, and functions which may be used in sub-

sequent simulation designs. The first choice involves determining which values will be passed to
or received from the server. All global variables (defined using the "defglobal" command) are
passed to the server. No other values are passed. Facts and local variables may be used to store
values which do not need to be passed to the server. It will be shown later how communication has

been further streamlined for efficiency. The most important rule is the clock rule.

The clock rule stays ready at all times, but because the salience (i.e. priority) of the rule is kept low,
it will not block the firing of other rules. When execution begins, the current system time is
retrieved and stored. The current simulation time is always known by retrieving the system time
and comparing it to the starting time. The new simulation time is temporarily stored in a variable
called "new_time"and is compared to the last calculated time. If the two values are the same, then
the clock rule has fired more than once within one second. In that case, the time is not printed and
facts are reset to allow the clock rule to fire again.

A "clock_tick" fact is used in the preconditions of rules to allow them to become ready for firing.
Without the clock_tick fact, a rule may never fire. Another time feature provided is the tick_tocks
function. Often a programmer would like to force a rule to consume clock time. A call to the
tick_tocks function forces execution to enter a side loop where the required time elapses before
execution continues.

COMPARISON

Usability

Most features of PERCNET are easy-to-learn and use While some study of petri-net theory
would benefit designers, much could be done with very minimal knowledge of petri-nets. One
difficulty in working with PERCNET was the lack of available documentation on the Tool Com-
mand Language (TCL). All function calls, calculations, communication and ad-hoc
programming are done using this language. Perceptronics provides only minimal documentation
on the use of the language within PERCNET making it very difficult to perform anything more
than the most basic operations. However, PERCNET's graphical interface is very appealing to
users.

CLIPS is a rule-based language, which means that there may be a larger learning curve than there
is with PERCNET's point-and-click interface. After the initial learning stages, however, CLIPS

leaves a developer with an immensely powerful simulation tool. The main advantage is flexibility.

279

CLIPS was written in the C programming language and is completely compatible and extendible
with C functions. Knowing C in advance can significantly lessen the learning curve. Many of the
"non-C" features of CLIPS resemble LISP. CLIPS has been a tremendous surprise to work with.

A basic proficiency with CLIPS may be gained quickly and one can learn to do very useful things
with the language. Writing the rules for the simulation was actually the easiest part of the project.
As proficiency with the language developed, more advanced features provided tremendous
possibilities. The manuals present the language in a very easy to read format, contained extensive
reference sections and sample code. Furthermore, the manuals outline how CLIPS may be easily
extended to include C (and other) functions written by programmers.

Functionality

As this project began, PERCNET was a closed package, that is, there was no provision for com-
municating with other applications. NASA contracted Perceptronics to modify PERCNET to
allow for such a feature. The final result was a revision of PERCNET which would allow com-

munication with other applications through the use of sockets. Applications are allowed to request
that global variables be retrieved and/or modified. PERCNET essentially opened it's blackboard
(i.e., global data store) to other applications. The other application in this case being the server.

After several functions were added to CLIPS (see descriptions in previous sections), the CLIPS

system performed the same functions as the Pewi Net simulator. If a new system is prototype& the
only changes which would be needed are to the knowledge base. The commumcation link devel-

oped for the Sammi-CLIPS architecture uses the blackboard paradigm to improve modularity,
flexibility, and efficiency. This form of data management stores all information in a central loca-
tion (the blackboard), and processes communicate by posting and retrieving information from the
blackboard. The server manages the blackboard, allowing applications to retrieve current values
from the board and to request that a value be changed. The server accepts write requests from
valid sources and changes values. The comparison of the two architectures goes much further than
comparing the two simulation designs. The design of the communication link significantly affects
the flexibility and performance of the architecture.

Performance

The performance within the Petri Net architecture was not acceptable for real-time interface
simulation. Interfaces running within this architecture exhibit a very slow response rate to user
actions when PERCNET is executing within its subnets. The PERCNET execution is also using
excessive amounts of swap space and memory which also affect the refreshing of displays.

Early analysis attempted to find the exact cause of the poor performance; however, only limited
work could be done without access to PERCNET's source code. Since PERCNET's code was

unavailable, we could only speculate about what was actually happening to cause the slow
responses. It was determined that the cause of much of the problem was that PERCNET was
trying to do too much. In the PERCNET simulation architecture, PERCNET is actually the data
server for the environment. The global blackboard is maintained within PERCNET. The server

only provides a mechanism for passing information between PERCNET and other applications.
The server is connected to PERCNET by a socket and the server is actually on the "client" end of
the connection-oriented socket. The server establishes connections with PERCNET and Sammi

and then alternately receives information from each. Any data or commands received from Sammi

are passed immediately to PERCNET. Commands from PERCNET for Sammi are passed
immediately through, as well. Finally, the server sends Sammi copies of all variables. Since
PERCNET is the blackboard server, as well as the simulator, PERCNET's performance would
naturally be affected by the added burden.

280

Lastly, the method provided for sending variables to the server was terribly inefficient. When a
calculation was performed in the simulation model for a variable that was needed by the interface,
that variable was passed to the server whether or not it's value had changed from the previous
iteration. No mechanism was provided for restricting the number of redundant values passed
across the communication link. As a result, PERCNET passed every value back to the server when

only a few had actually changed.

Each of these limitations was addressed in the design of the server and blackboard in the rule-
based architecture. The server program may be divided into three portions: blackboard manage-
ment, Sammi routines, CLIPS routines. The Sammi and CLIPS routines are provided to

communicate with the respective applications. These routines map data into a special "blackboard
entry" form and pass the data to the blackboard management routines. The blackboard routines
also return information to the Sammi and CLIPS routines for routing back to the applications. The

blackboard management routines require that each application (many more applications may be
supported) register itself initially. Applications are assigned application identification numbers
which are used for all subsequent transactions. This application number allows the blackboard to
closely monitor which variable values each application needs to see. It also provides a mechanism
for installing a priority scheme for updates.

The overwhelming advantage of the CLIPS and blackboard combination is the flexibility and po-
tential they provide. Features are provided that allow modifications which can affect performance.
The ability to tune the performance has allowed the simulation architecture to be tailored to spe-
cific running conditions (e.g., machine limitations, network traffic and complexity of the interface
being simulated). Several parameters may be modified to alter performance. Tuning tests have
improved performance. More detailed performance testing is planned to verify the results.

CONCLUSION

The goal of the architecture has been to provide simulation of user interfaces so that they may be
designed and evaluated quickly. An important portion of the dynamic prototyping architecture is
therefore the simulator. Ease-of-use is very important, but performance is critical. The Petri Net
architecture's ease-of-use is currently its only advantage over the Rule-Based architecture. The
Rule-Based design overcomes this with power and flexibility. Work currently in progress include
a detailed analysis of the performance of the communication link and a design of a graphical
interface to CLIPS.

REFERENCES

1. CLIPS Reference Manual, NASA Johnson Space Flight Center, Houston, Texas, 1993.

. Moore, Loretta, "Assessment of a Human Computer Interface Prototyping Environment," Final
Report, Delivery Order No. 16, Basic NASA Contract No. NAS8-39131, NASA Marshall

Space Flight Center, Huntsville, Alabama, 1993.

3. PERCNET User's Manual, Perceptronics Inc., Woodland Hills, California, 1992.

4. Price, Shannon, "An Improved Interface Simulation Architecture", Final Report for Master of
Computer Science and Engineering Degree, Auburn University, Auburn, Alabama, 1994.

5. Sammi API Manual, Kinesix Corporation, Houston Texas, 1992.

281

